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The primary objective of this work was to develop and demonstrate a process for ac-
curate and efficient uncertainty quantification and certification prediction of low-boom,
supersonic, transport aircraft. High-fidelity computational fluid dynamics models of multi-
ple low-boom configurations were investigated including the Lockheed Martin SEEB-ALR
body of revolution, the NASA 69◦ Delta Wing, and the Lockheed Martin 1021-01 configu-
ration. A nonintrusive polynomial chaos surrogate modeling approach was used for reduced
computational cost of propagating mixed, inherent (aleatory) and model-form (epistemic)
uncertainty from both the computation fluid dynamics model and the near-field to ground
level propagation model. A methodology has also been introduced to quantify the plausi-
bility of a design to pass a certification under uncertainty. Results of this study include
the analysis of each of the three configurations of interest under inviscid and fully turbu-
lent flow assumptions. A comparison of the uncertainty outputs and sensitivity analyses
between the configurations is also given. The results of this study illustrate the flexibility
and robustness of the developed framework as a tool for uncertainty quantification and
certification prediction of low-boom, supersonic aircraft.

Nomenclature

Ns Number of Samples
Nt Number of Terms in a Total-Order

Polynomial Chaos Expansion
n Number of Random Dimensions
p Polynomial Order
α∗ Stochastic Response

Ψ Random Basis Function
ξ Standard Input Random Variable
α Deterministic Coefficient in the Polynomial

Chaos Expansion
CR Confidence Ratio

I. Introduction

One of the most substantial obstacles to commercial supersonic flight over land is the creation of a sonic
boom. Current Federal Aviation Administration and Committee on Aviation Environmental Protection
restrictions prohibit commercial supersonic flight over many countries, including the United States, due to
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the ground level boom signature. Recent thrusts in research have focused on reducing the boom signature in
hopes of reversing the regulations, in turn increasing the viability of supersonic flight. In 2003, after a series
of tests that measured the ground signature of a F-5 Shaped Sonic Boom Demonstration (SSBD) supersonic
aircraft, the SSBD program concluded sonic boom mitigation was possible through shape optimization.1 This
has launched programs focusing on the design of low boom aircraft. Some examples are Gulfstream’s Quiet
Spike, Lockheed Martin’s and Boeing’s N+1 and N+2 supersonic designs, and Japan Aerospace Exploration
Agency’s (JAXA) NEXST and S3TD programs.2–5 In 2008, NASA held a Sonic Boom Prediction Workshop
to assess the performance of computational fluid dynamics (CFD) for near-field boom prediction and a 2014
conference recently revisited this topic.6

As a means of aiding and accelerating the design process, CFD has become an important part of de-
veloping supersonic aircraft. Current, state of the art predictions use a three-dimensional CFD solvers to
determine the near-field pressure signature, which is then numerically propagated to the ground level. These
numerical results are often used to help inform the design of supersonic vehicles through various techniques,
such as adjoint-based optimization employing near-field targeting or ground signature loudness7–9 and less
computationally demanding derivative-free techniques.10 In any case, these computational models take one
set of inputs (which may include the geometry, freestream conditions, angle-of-attack, or modeling parame-
ters for turbulence and boom propagation) and produce a deterministic set of outputs (e.g., ground signature,
final optimized geometry, and near-field flow information). Often, the input parameters may not be known
exactly due to inherent variations in flight conditions and manufacturing tolerances. Additionally, error is
introduced through assumptions made when creating the relevant mathematical models. Supersonic aircraft
are sensitive to these changes and this motivates the development of a framework which can account for and
efficiently represent the uncertainties in the design space for use in reliable and robust design of supersonic
low-boom configurations that will meet necessary performance standards.

The primary objective of this study is to develop and demonstrate a framework for accurate and effi-
cient uncertainty quantification (UQ) and certification prediction methodology for low-boom configurations.
Because of the computational demand of low-boom configuration models, traditional sampling techniques,
such as Monte Carlo, may not be feasible. The goal is to minimize the number of computationally expensive
deterministic model evaluations needed for an accurate UQ analysis. In this study, a non-intrusive polyno-
mial chaos surrogate modeling approach is used to represent the CFD and boom propagation models for
each low-boom configuration investigated. Uncertainty in low-boom configuration modeling included mixed
model-form (epistemic) and inherent (aleatory) uncertainty, which are propagated through the surrogate
models. Three geometries were identified to be of interest and are used as demonstration configurations of
the developed framework. The configurations selected were an axisymmetric, body of revolution (BOR) from
Lockheed-Martin (SEEB), the NASA 69◦ Delta Wing, and the Lockheed Martin (LM) 1021-01 low-boom
aircraft configuration.

The following section of this paper introduces the computational modeling of sonic boom signatures,
as well as how signatures predicted near the configuration are propagated to the ground. Section III then
describes the UQ methodology employed, which included the creation of surrogate models for the output
quantities of interest. A brief description of the types of uncertainty and the propagation of mixed uncertainty
are given in Section IV. Section V describes the methodology utilized for certification prediction of selected
performance metrics for low-boom configurations. The UQ and certification prediction framework is then
summarized in Section VI and demonstrated in Section VII using three low-boom configurations. Important
conclusions obtained from this study are summarized in the final section.

II. Modeling and Propagation of Sonic Booms

In this study, a high-fidelity approach was used to model sonic booms produced by low-boom configura-
tions. This involved a high resolution CFD analysis near the body (the near-field). The near-field domain
includes the vehicle and a region extending multiple body lengths away from the aircraft. The goal is to
resolve the near-field pressure signature, parallel to the flow direction, that is generated by the body in
supersonic flow. An example of this is shown in Figure 1. This signature is then propagated to ground
level using a high fidelity propagation code called sBOOM.9 This simulates how the signal will change while
passing through the atmosphere. Once a final ground signature is predicted, output quantities of interest,
such as perceived loudness (PLdB) and C-weighted sound exposure level (CSEL), are evaluated and may
serve as design and certification metrics. The remainder of this section gives further detail regarding the
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CFD simulations and the propagation model.

Figure 1: Near-Field CFD Domain with Pressure Signature

A. Computational Fluid Dynamics Modeling

This study employed the Fully Unstructured Navier-Stokes Three-Dimensional (FUN3D)11 flow solver for
CFD analysis of low-boom configurations. FUN3D contains many tools for design optimization and analysis
and was developed and is maintained at the NASA Langley Research Center. The code employs the finite
volume formulation and stores flow field variables at the control volume nodes. FUN3D can handle aerody-
namic simulations across a large range of Mach numbers from the subsonic to hypersonic regimes and has
been used extensively for the analysis of sonic boom prediction.12–14

All cases investigated in this study were assumed to be at steady state. Often, the Euler equations
are solved in place of the full Navier-Stokes equations for high Reynolds number, aerodynamic flows by
assuming the flow is inviscid. While this is a known simplification of the actual flow physics, it allows for
computational savings when investigating large-scale-complex problems or when large numbers of simulations
are needed, such as when performing UQ. However, low-boom configurations may be designed to exploit
viscous effects, which smear or dampen shocks. This would be overlooked when using an Euler assumption.
In the current study, both inviscid and viscous, fully turbulent cases were explored. When solving the Euler
equations, the inviscid fluxes were calculated at cell edges by employing the van Leer scheme to solve an
approximate Riemann problem. For viscous cases, the inviscid fluxes are calculated by the Roe scheme
for the approximate Riemann problem, if possible. In order to aid convergence, the viscous simulations of
the LM-1021 and 69◦ Delta wing required the use of the dissipative Low Diffusion Flux Splitting scheme.
For modeling the turbulence, the one equation Spalart-Allmaras15 model was employed for computational
efficiency and robustness.

B. Computational Grids

The configurations of interest (SEEB-ALR, 69◦ Delta Wing, and the LM 1021-01) are shown in Figure 2.
The SEEB-ALR model is described by Morgenstern et al.3 and the 69◦ Delta Wing is discussed by Hunton
et al.16 The LM 1021-01 low-boom configuration is detailed by Morgenstern et al.17 The discussion of the
physical models, their origins, and design specific details are left to these studies.

The inviscid SEEB-ALR and inviscid Delta Wing grids were the same grids made available for the 2014
AIAA Sonic Boom Prediction Workshop. The SEEB-ALR and Delta Wing models began as STEP files and
a solid representation was extracted. Then, a triangular surface mesh and tetrahedral volume mesh were
generated using GridEx.19 The core grid was then extruded using the Inflate method13 in a direction aligned
with the Mach angle so the relevant pressure signatures can be captured without wasting points in regions
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Figure 2: Configurations Studied in the Present Work. SEEB-ALR (left), NASA 69◦ Delta
Wing (center), LM 1020-01 (right). Models Not to Relative Scale. Reproduced with permis-
sion from Aftosmis et al.18

which are not influenced by the aircraft. Full details on the SEEB-ALR and 69◦ Delta Wing solid models,
grids, and grid generation techniques for near-field sonic boom CFD are given in Park et al.13 A cross section
showing both the core grid and part of extruded region for the Delta Wing model is included in Figure 3.

One point of interest is that two versions of the SEEB-ALR solid model exist: the as-built and the
as-designed. The as-designed geometry has a perfectly smooth surface, but the as-built model used in the
wind tunnel testing possessed many surface imperfections as shown in Figure 4. It will later be shown that
these flaws are reflected in the near-field signature. One objective of this study will be to quantify the effect
of the surface imperfections on the loudness quantities of interest in this study.

Figure 3: Computational Grid for the Vis-
cous 69◦ Delta Wing Including Extruded Re-
gion

Figure 4: SEEB-ALR Surface Imperfections
of the as-Built Model

4 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ju
ne

 2
5,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

21
39

 



Table 1 summarizes the grid sizes for each model. In general, viscous grids needed to be much more
refined. Coupled with the turbulence model, viscous cases took 5-10 times longer to converge than the Euler
cases. This is especially significant for the LM-1021. All cases were run in parallel over 192 processors.

Table 1: CFD Grid Dimensions and Computational Time demands

Model Cells Nodes Solution Time

SEEB-ALR Euler 7.83e+06 2.89e+06 20 min

SEEB-ALR Viscous 3.64e+07 6.20e+06 1.3 hrs

69◦ Delta Wing Euler 2.24e+07 5.36e+06 10 min

69◦ Delta Wing Viscous 7.80e+06 2.90e+06 2 hrs

LM 1021-01 Euler 3.38e+07 8.37e+06 30 min

LM 1021-01 Viscous 7.24e+07 2.45e+07 5 hrs

To lessen the computational burden of the multiple CFD evaluations required for the UQ analysis, baseline
cases with unperturbed parameter values were completed for each vehicle. These were then restarted for each
random sample vector within the stochastic parameter space. For every configuration, this resulted in fewer
iterations to achieve convergence compared to a completely new solution. This was especially significant for
the LM-1021.

C. Near-field Signature Propagation

After obtaining the near-field pressure signature from the CFD model, it can then be propagated to the
ground using a program called sBOOM. This model uses an augmented Burgers equation to propagate the
near-field pressure signature to the ground level. The model takes into account nonlinear effects, thermo-
viscous absorption, atmospheric stratification, spreading, and many other molecular relaxation phenomena.
Further details regarding this model are given by Rallabhandi.20

III. Uncertainty Quantification Methodology

Many high-fidelity numerical models, such as those discussed in section II, are computationally demand-
ing. When performing UQ, traditional sampling methods may be problematic as large numbers of evaluations
of the deterministic model are typically required for accurate results. In this study, a surrogate modeling
approach based on polynomial chaos theory is utilized for improved computational efficiency. This section
details the formulation of the surrogate models for use in accurate and efficient UQ.

A. Point-Collocation Nonintrusive Polynomial Chaos

In recent studies,21–25 the polynomial chaos method has been used as a means of UQ over traditional methods,
such as Monte Carlo, for its computational efficiency. Polynomial chaos is a surrogate modeling technique
based on the spectral representation of the uncertainty. An important aspect of spectral representations is
the decomposition of a response value or random function α∗ into separable deterministic and stochastic
components, as shown in Eq. (1).

α∗(x, ξ) ≈
P∑
i=0

αi(x)Ψi(ξ) (1)

Here, αi is the deterministic component and Ψi is the random variable basis functions corresponding to
the ith mode. α∗ is assumed to be a function of the vector x of independent random variables and the
n-dimensional standard random variable vector ξ. Note that this series is, by definition, an infinite series.
However, in practice, it is truncated and a discrete sum is taken over a number of output modes.26 To form
a complete basis or for a total order expansion, Nt terms are required, which can be computed from Eq. (2)
for a polynomial chaos expansion (PCE) of order p and a number of random dimensions or variables, n.

5 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ju
ne

 2
5,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

21
39

 



Nt = P + 1 =
(n+ p)!

n!p!
(2)

Further details on polynomial chaos theory are given by Walters and Huyse,27 Eldred26 and Ghanem.28

The objective with any PCE method is to determine the expansion coefficients, αi. To do this, polynomial
chaos methods can be implemented using an intrusive or a non-intrusive approach. While an intrusive method
may appear straightforward in theory, for complex problems this process may be time consuming, expensive,
and difficult to implement.21 In contrast, the non-intrusive approach can be easily implemented to construct
a surrogate model that represents a complex computational simulation, because no modification to the
deterministic model is required. The non-intrusive methods require only the response (or sensitivity)29–31

values at selected sample points to approximate the stochastic response surface.
Several methods have been developed for non-intrusive polynomial chaos (NIPC). Of these, the point-

collocation NIPC method has been used extensively in many aerospace simulations and CFD problems.22,23,25,29

The point-collocation method starts with replacing a stochastic response or random function with its PCE
using Eq. (1). Then, Nt vectors are chosen in random space and the deterministic code is then evaluated at
these points, which is the left hand side of Eq. (1). Following this, a linear system of Nt equations can be
formulated and solved for the spectral modes of the random variables. This system is shown in Eq. (3).

Ψ0(ξ0) Ψ1(ξ0) · · · ΨP (ξ0)

Ψ0(ξ1) Ψ1(ξ1) · · · ΨP (ξ1)
...

...
. . .

...

Ψ0(ξP ) Ψ1(ξP ) · · · ΨP (ξP )



α0

α1

...

αP

 =


α∗(x, ξ0)

α∗(x, ξ1)
...

α∗(x, ξP )

 (3)

Note that for this linear system, Nt is the minimum number of deterministic samples required to obtain
an analytical solution (i.e., the coefficient vector). If more samples are available and that are linearly
independent, the system is considered overdetermined and can be solved using a least squares approach.
The number of samples over the required minimum is represented by the use of an oversampling ratio
(OSR), defined as the ratio of number of actual samples to the minimum number required (i.e., Nt). In
general, the number of collocation points can be determined by multiplying Eq. (2) by an OSR. Hosder et
al.32 determined an effective OSR of two for the stochastic model problems studied. It was shown that the
accuracy of the PCE is dependent on the number of collocation points.

IV. Types of Uncertainty and Mixed Uncertainty Propagation

A critical step in any uncertainty analysis is the classification of the uncertain parameters. These pa-
rameters may be mathematically represented differently based on the nature of their uncertainty. Incorrect
classification and/or treatment of uncertain parameters can result in widely varying output uncertainty. The
objective of this section is to describe the two main categories of uncertainty that exist in numerical modeling
and outline a procedure for propagating uncertainty when both types are present.

A. Types of Uncertainty

Two main types of uncertainty exist in numerical modeling: aleatory uncertainty and epistemic uncertainty.33

Aleatory uncertainty is the inherent variation of a physical system. Such variation is due to the random
nature of input data and can be mathematically represented by a probability density function if substantial
experimental data is available for estimating the distribution type. An example of this for stochastic CFD
simulations could be the fluctuation in freestream quantities. While still considered a random variable, these
variables are not controllable and their uncertainty is sometimes referred to as irreducible.

Epistemic uncertainty in a stochastic problem comes from several potential sources. These include a lack
of knowledge or incomplete information of the behavior of a particular variable. Also, ignorance or negligence
with regards to accurate treatment of model parameters is a source of epistemic uncertainty. Contrary to
aleatory uncertainty, epistemic uncertainty is sometimes referred to as reducible uncertainty. An increase
in knowledge regarding the physics of a problem, along with accurate modeling, can reduce the amount
of this type of uncertainty. Epistemic uncertainty is typically modeled using intervals because the use of
probabilistic distributions (even a uniform distribution) can lead to inaccurate predictions in the amount of
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uncertainty in a system. Upper and lower bounds of these intervals can be drawn from limited experimental
data or from expert predictions and judgment.21,22

An additional, special case of epistemic uncertainty is numerical error. This uncertainty is common in
numerical modeling and is defined as a recognizable deficiency in any phase or activity of modeling and
simulations that is not due to lack of knowledge of the physical system. In CFD, an example of this type
of uncertainty would be the discretization error in both the temporal and spatial domains that comes from
the numerical solution of the partial differential equations that govern the system.22 This uncertainty can
be well understood and controlled through code verification and grid convergence studies.

B. Mixed Uncertainty Quantification

Many stochastic problems, including those to be used in this study, may contain both epistemic and aleatory
types of uncertainty. The desired approach is to consider the contribution of both types of uncertainty
simultaneously by propagating the mixed uncertainty through the stochastic model. This can be done using
a procedure known as second-order probability. An NIPC response surface can be used within second-order
probability in place of the deterministic code, as shown in Figure 5. Traditionally, second-order probability
is a type of double loop sampling. In the outer loop, a vector of specific values for the epistemic variables is
passed into the inner loop where the stochastic response surface resulting from the NIPC analysis is sampled
for the single epistemic sample vector and every aleatory sample vector. The process is repeated for all of
the epistemic sample vectors. This means that the total number of samples of the NIPC response surface is
the number of epistemic samples times the number of aleatory samples. While many samples are typically
required, In general, sampling the surrogate model is much less computationally expensive than sampling
the deterministic model.

Each iteration of the outer loop generates a cumulative distribution function (CDF) based on the aleatory
uncertainty analysis in the inner loop. After completion of the process, what remains is a series of CDFs,
which, when plotted, gives intervals of the output variable from the model at different probability levels (i.e.,
a probability or “P-box” representation of mixed uncertainty output). Second-order probability can also be
implemented with a Monte Carlo approach that uses the original model in the place of the response surface,
which is done for the first model problem in this study for comparison with the NIPC results.

Figure 5: Schematic of Second-Order Probability

As shown by Eldred and Swiler,34 the outer (epistemic) loop may also be replaced by optimization-
based interval size determination approaches, which include both local and global optimization methods
to determine interval bounds of the output response at selected probability levels. One approach, based
on the combination of sampling and local optimization, can be used for the outer loop to determine the
bounds at selected probability levels. The outer loop is first evaluated with a small number of samples to
determine robust estimates for the initial values of epistemic variables used in local optimization. Then, the
optimization is performed with these initial starting points for minimizing or maximizing the response at
selected probability levels. This approach provides a computationally efficient means of obtaining accurate
results (i.e., interval bounds) via optimization, rather than using extensive sampling of the response surface.

V. Certification Prediction

After quantifying the uncertainty in a configuration model, the next step is to determine the reliability
of the design under the measured uncertainty. As mentioned in Section I, one of the obstacles of commercial
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supersonic flight is sonic boom production and loudness effect at the ground level. Future regulations on
commercial supersonic flight may place limitations on sonic boom loudness measures. One objective of this
study is to outline a procedure for predicting certification potential of supersonic configurations.

In order to predict the certification plausibility of a particular configuration a process capability analysis
may be employed.35 The objective of this analysis is to compare the performance of a process, or in
this case the performance metrics (e.g., PLdB, CSEL, etc.), against performance specifications or limits
(i.e., certification values). Several factors must be considered, including a margin, measured between a
performance metric and a certification value, as well as the uncertainty in a performance metric. For a
probabilistic representation of the uncertainty in a particular performance metric, any margin measurement
will also carry a probability. Figure 6 illustrates how a margin can be determined from a P-box obtained
after the propagation of mixed uncertainty (see Section IV). Notice that the margin is measured between
highest response value at a selected probability level or requirement (e.g., 95% confidence level) and the
certification value. A positive margin, shown in Figure 6(a), would exist when the response value (at the
probability requirement level) is less than the certification value. On the other hand, if the response value
is greater than the certification value, as in Figure 6(c), the margin would be negative and may indicate the
design would not pass certification.

(a) Large Positive Margin (b) Small Positive Margin (c) Negative Margin

Figure 6: Certification Predication Margin and Uncertainty Measurements

Because a probability level or requirement is used as part of the margin measurement, it would be possible
that the margin may be positive, even if the boundary of the P-box hangs over the “Failure Region” of the
certification value, as shown in Figure 6(b). While the margin is positive, the reliability of the configuration
performance may be in question. Accounting for this uncertainty is desirable for a reliable design and
accurate certification prediction. Using the approach outlined by West et al.36 a ratio between the margin
and the uncertainty may be used as a reliability measure in the certification prediction. This ratio is termed
a confidence ratio, CR, and is shown in Eq. (4).

CR =
Margin

Uncertainty
(4)

Note that the measurement of the uncertainty is conservatively taken as the distance between the lower 50%
probability level response value and the upper response value at the probability level of the certification
predication analysis. West et al.36 also provides details on the treatment of different types of uncertainty
representation (i.e., pure aleatory and pure epistemic), as well treatment of cases with uncertainty in the
certification values.

This confidence ratio can be viewed as a type of factor of safety. If the margin is larger then the
uncertainty in the performance metric, the confidence ratio will be greater than one. In the instance when the
uncertainty is greater than the margin, a CR of less than one will result and may indicate weak reliability in
the configuration to sufficiently meet a certification requirement. A weak system reliability or failure to meet
the certification value (see Figure 6(c)) may warrant changes to the configuration modeling (e.g., reduction of
the epistemic uncertainty or a redesign of the actual configuration) or changes in the certification prediction
analysis, such as using a lower probability requirement or even reevaluating the certification requirement.
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VI. Uncertainty Quantification and Certification Prediction Framework

Previous sections of this study describe methodologies of accurate and efficient UQ and certification
prediction of low-boom supersonic transport configurations. In order to streamline the analysis, a framework
using these methodologies was formulated and is shown in a flowchart in Figure 7. Note that the first step
in this framework is a comparison of the CFD model with experimental data. However, in cases where this
process is used in tandem with design optimization, experimental data may not exist.

Figure 7: Uncertainty Quantification and Certification Prediction Process

Additionally, because of the use of a surrogate model, checking the accuracy of the surrogate models is
necessary. One approach for measuring the accuracy of a surrogate model is to compare response values
from the surrogate to a set of sample points distributed throughout the design space, separate from the
surrogate model training samples. The objective is to measure the error between response values from the
PCE and the actual deterministic model values at the test sample locations. This approach is an indication
of the local accuracy of the surrogate model. In this study, sample points from a Latin Hypercube sample
structure of the design space and an average of the errors is used as an indication of the surrogate accuracy.
Latin Hypercube sampling has the advantage of providing well distributed coverage of the design space with
even small sample sizes. Note that each test point used to measure the accuracy of the surrogate model does
require an additional evaluation of the deterministic model.

VII. Sources of Uncertainty and Low-Boom Model Analysis Results

In this section, the UQ and certification prediction framework outlined in the previous section is demon-
strated on three low-boom configurations: the SEEB-ALR body of revolution, the NASA 69◦ Delta Wing
heritage model, and the Lockheed Martin 1021-01 configuration. The section begins with the identification
of possible sources of uncertainty in the modeling approach and in low-boom configuration operation (i.e.,
in flight uncertainty). Then, the framework is demonstrated on each of the configurations with detailed
discussion of output uncertainty in design parameters of interest. Note that for each of the configurations,
the experimental data used to validate the CFD models was taken from wind tunnel test data discussed in
detail by Cliff et al.37

Additionally, a sensitivity analysis was performed on each configuration to identify the uncertain parame-
ters that contribute most significantly to the total output variance. This information can be used for multiple
purposes including targeting resources for improvement of models, refinement of uncertain information, or in
design. The parameter sensitivities were determined using a global nonlinear approach called Sobol indices
and is based on the PCE. Further details regarding this approach are given by Sudret,38 Crestaux et al.,39

as well as Ghaffari et al.40

A. Sources of Uncertainty in Low-Boom Configuration Modeling

One of the most critical steps in any uncertainty analysis is the identification and classification of the input
uncertainties of the models. In this study, the deterministic model is decomposed into two parts as outlined
in section II. First, for the CFD model, two input uncertain parameters were identified as possible sources of
uncertainty: Mach number and angle of attack. The type and amount of uncertainty are shown in Table 2.
Note that these parameters were determined to be aleatory parameters given their possible inherent nature
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as small fluctuations in these parameters are typically unavoidable. For the Mach number, two mean values
are considered for comparison with the experimental data. The SEEB-ALR and LM 1021-01 configurations
were tested at Mach 1.6, while the Delta Wing was tested at Mach 1.7.

Table 2: CFD Aleatory Input Parameters

Input Distribution Mean Std. Dev.

Angle of Attack Gaussian 0.0 0.1

Mach Number Gaussian 1.6/1.7 0.0016

A second set of uncertain parameters were identified as coming from the propagation model, sBOOM.20

This model contained a particularly large amount of uncertainty, both aleatory and epistemic, due to its
complexity and the large number of tunable input parameters. The aleatory parameters, listed in Table 3
consist of two groups. The first is uncertainty in the atmosphere that may effect the propagation of the sonic
boom signature as it travels from the vehicle near-field to the ground. The second group of parameters are
those that may effect the shape of the signature due to changes in vehicle orientation and orientation rates.
The measurement location or azimuth is also considered uncertain. In this study, only the on-track position,
with uncertainty, is investigated.

Table 3: sBOOM Aleatory Input Parameters

Input Distribution Mean Std. Dev.

Temperature Profile (%) Gaussian 1.0 0.01

Humidity Profile (%) Gaussian 1.0 0.01

Climb Angle (Deg.) Gaussian 0.0 0.1

Azimuth (Deg.) Gaussian 0.0 0.1

Turn Rate (Deg./s) Gaussian 0.0 0.05

Climb Rate (Deg./s) Gaussian 0.0 0.05

As with the CFD uncertain parameters, the aleatory parameters are those that have been modeled,
but random fluctuations may still occur. However, epistemic parameters, listed in Table 4, exist due to
lack of knowledge of the correct modeling approach. The initial step size and signature propagation points
parameters are adjustable sBOOM specific input parameters. The signature propagation points variable is
related to the sampling frequency of the signal and may directly effect the accuracy of the loudness metrics
from the integrated ground level signature. The number of points necessary for an accurate result may vary
based on the signal length, signal shape, or the signal source (i.e., the configuration). Note also that the
value of this parameter is both the number of points used within the propagation routine and the number
of points in the final ground level signature that is analyzed to find the loudness measures. The other two
parameters (reflection factor and ground level altitude) are considered epistemic uncertain parameters as
they are not being modeled for a specific flight location. These parameters may vary significantly along a
flight path.

Table 4: sBOOM Epistemic Input Parameters

Input Min. Max.

Initial Step Size 0.007 0.03

Reflection Factor 1.8 2.0

Ground Elevation (ft) 0.0 5000.0

Signature Propagation Points 20000 60000
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In addition to the above uncertain input parameters, inviscid and fully turbulent CFD solutions were
performed for all of the configurations analyzed in this study. The purpose of this is to quantify the effect
of different modeling fidelities for the various low-boom configurations studied. Note that the amount of
uncertainty in each parameter discussed above was the result of much discussion among the authors and
other experts in the field.

B. SEEB-ALR Body of Revolution

1. Comparison with Experiment

The first step in the UQ process is to validate the CFD solution. Near-field signatures were taken at 21.2
inches from the body to coincide with experimental data. Comparison with the experiment is shown in
Figure 8(a) for both as-built and as-designed geometries, and for both inviscid and fully turbulent flow
assumptions. A residual scale plot of the signatures is shown in Figure 8(b). In this figure, the averaged
experimental signature is treated as a reference and is subtracted off of the uncertainty bounds and the
CFD signatures. Notice that there is good agreement between the experiments and the CFD results as
the CFD signatures mostly lie within the bounds of the uncertainty in the experimental results. There are
some differences in the peaks of the signatures, but the experimental results have rounded peaks due to the
measurement approach.37 This agreement is deemed to be acceptable and is assumed to validate the baseline
numerical solution.
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Figure 8: SEEB-ALR Near-Field CFD Comparison with Experimental Results

2. Uncertainty Quantification

After validating the CFD model, the next step is to construct the surrogate model(s) that represent the
design quantities of interest. In this study, PLdB and CSEL were considered. In total, there are 12 uncertain
parameters, as discussed above. Using Eq. (2), 182 evaluations of the deterministic model were necessary to
construct a second order PCE with twice oversampling. In evaluating the deterministic model, the first step
is to obtain CFD solutions for the near-field pressure signatures. The dispersion of the deterministic samples
for the Euler as-built case are shown in Figure 9(a). Figure 9(b) shows the same dispersion of signals, but
shifted to reference location for better visualization of changes in signature amplitude.

The CFD signatures were then each propagated through sBOOM with the additional uncertainty that
was identified for this model. For the Euler as-built case, the resulting ground signature dispersion is shown
in Figure 10(a) and shifted to a reference location in Figure 10(b). The ground signatures were then analyzed
to produce the desired loudness quantities of interest.

Similar dispersions of the near-field and ground level signatures can be generated for the other three
cases investigated for this model (Euler as-designed, turbulent as-built and turbulent as-designed). While
not shown here, these dispersions are similar to those shown for the Euler as-built case.
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Figure 9: SEEB-ALR Euler as-Built Near-Field Pressure Signature Dispersion
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Figure 10: SEEB-ALR Euler as-Built Ground Signature Dispersion

Note that for most of the CFD models, the signatures do not recover fully. This can stem from the
inclusion of the mounting system used within the wind tunnel in the computational geometry and/or the
truncation of the computational domain. For more accurate results and to eliminate any numerical instabil-
ities within the propagation routine/loudness measure calculations, the ends of the signatures are forced to
zero and additional zero padding is added to the signatures for all of the configurations in this study.

At this point, the surrogate models for the output quantities of interest can be created by solving the
linear system of equations given in Eq. (3). Measuring the accuracy of the surrogate models across the
design space can be done by sampling a set of test points in the design space and comparing outputs from
the deterministic model with the outputs from the surrogates at the same sample locations. Twenty new
samples were taken to measure the accuracy of the surrogates. It was determined that the average error at
these twenty test points was less than 0.03% for all of the geometry/flow type/loudness quantity combinations
indicating the selection of a second-order PCE was sufficient. Note that these test points are different from
those points used to train the surrogate models and are distributed evenly throughout the design space with
a Latin Hypercube sample structure.

With the surrogate models constructed and validated, the uncertainty can be propagated through the
surrogates using the second-order probability analysis outlined in section IV. This was done using the
sampling approach, resulting in the family of CDFs. For the Euler as-built case, the boundaries of the
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P-boxes are shown in Figure 11(a) and Figure 11(b) for PLdB and CSEL, respectively.
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Figure 11: SEEB-ALR Euler as-Built PLdB and CSEL Probability Box Boundaries

A significant amount of information can be disseminated from P-boxes, including confidence intervals.
For the case of mixed uncertainty, one approach to obtaining the 95% confidence interval, for example, is to
take the upper 97.5% probability level and the lower 2.5% probability level as the interval. A summary of
the 95% confidence intervals is shown in Table 5 for all of the models, subject to the uncertainty identified
in this study.

Table 5: SEEB-ALR 95% Confidence Intervals

Configuration PLdB CSEL

Euler as-Built [89.12 , 91.63] [94.64 , 96.05]

Euler as-Designed [88.06 , 90.49] [94.32 , 95.80]

Turbulent as-Built [89.44 , 91.95] [94.78 , 96.22]

Turbulent as-Designed [88.98 , 91.61] [94.75 , 96.20]

From these results, it can been seen that there is a difference between the ideal as-designed geometry
and the actual as-built model. The imperfections in the surface cause an increase in the PLdB level. In
the case of CSEL, the same trend is not as severe, but still present. Additionally, it can be disseminated
that the effect of an inviscid versus the fully turbulent analysis is small and is less than that of the effect of
the surface imperfections in the as-built geometry. For preliminary design and analysis, this indicates the
use of the low fidelity solution may be acceptable when considering the added computational cost of a fully
turbulent solution, for this configuration.

3. Certification Prediction

The final step in the analysis is to predict whether or not the design, under uncertainty, could potentially pass
a certification based on the design quantity of interest. Currently, the actual certification value for low-boom
configurations is unknown. However, the methodology outlined in section V can be easily implemented for
certification prediction. For example, if the certification requirement was a PLdB of less than 100, the Euler
as-built design would have a CR of 4.27 for a 95% confidence analysis. This may indicate that the margin
is sufficiently larger than the uncertainty in the design.
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4. Sensitivity Analysis

A sensitivity analysis of the uncertainty parameters was performed to highlight which of the parameters
contribute most significantly to the total uncertainty. The contribution of the top uncertain parameters to
both PLdB and CSEL are given in Tables 6 and 7, respectively. For both metrics, the reflection factor appears
to be the most dominate of the parameters considered. This is especially true for CSEL as the reflection factor
contributes about 85 to 90% to the total output variance. For PLdB, a significant amount of uncertainty also
arises due to the uncertainty in the atmospheric humidity profile. Loubeau and Coulouvrat41 have shown
that variation in the atmospheric humidity can significantly effect the sonic-boom rise time, which may effect
the signature loudness.

Table 6: SEEB-ALR Top Uncertain Parameter Contribution to PLdB Total Uncertainty

Uncertain Parameter Euler Euler Turbulent Turbulent

as-Built as-Designed as-Built as-Designed

Angle of Attack 4.7% 9.6% 2.4% 6.7%

Initial Step Size 1.6% 1.1% 1.7% 1.8%

Reflection Factor 46.4% 44.8% 45.9% 44.2%

Humidity Profile 38.3% 35.7% 41.6% 36.1%

Ground Elevation 7.9% 7.7% 6.8% 9.7%

All Others <1% <1% <1% <1%

Table 7: SEEB-ALR Top Uncertain Parameter Contribution to CSEL Total Uncertainty

Uncertain Parameter Euler Euler Turbulent Turbulent

as-Built as-Designed as-Built as-Designed

Angle of Attack 3.6% 6.2% 4.5% 4.6%

Reflection Factor 88.2% 84.1% 86.5% 86.0%

Temperature Profile 2.2% 2.4% 2.4% 2.4%

Humidity Profile 1.7% 1.5% 1.7% 1.7%

Ground Elevation 4.1% 5.5% 4.6% 5.2%

All Others <1% <1% <1% <1%

C. NASA 69◦ Delta Wing

1. Comparison with Experiment

For the NASA 69◦ Delta Wing, near-field signatures were taken at 24.8 inches from the body to coincide
with experimental data. Comparison with the experiment is shown in Figure 12(a) for both inviscid and
fully turbulent flow assumptions. A residual scale plot of the signatures is shown in Figure 12(b). The CFD
signatures are in fairly good agreement with the experimental results as the signatures lie primarily within
the bounds of the uncertainty in the experimental results. There is some rounding of the experimental results
similar to the results of the SEEB-ALR model. This is due to model vibration and the instrumentation used
during the wind tunnel testing.37 However, given these small and expected differences, the baseline numerical
solution is considered to be accurate and validated for the purposes of this study.

2. Uncertainty Quantification

As above, surrogate models are constructed for the design quantities of interest, PLdB and CSEL. The
number of uncertain parameters is the same as with the SEEB-ALR and, therefore, the deterministic model
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Figure 12: 69◦ Delta Wing Near-Field CFD Comparison with Experimental Results

is evaluated 182 times to construct a second order PCE. The dispersion of the deterministic samples for
the Euler case are shown in Figure 13(a). Figure 13(b) shows the same dispersion of signals, but shifted to
reference location for better visualization of changes in signature amplitude. The resulting ground signature
dispersion, for the Euler case, is shown in Figure 14(a) and shifted to a reference location in Figure 14(b).
Similar dispersions of the near-field and ground level signatures can be generated for the fully turbulent case.
While not shown here, this dispersions are similar to those shown above for the Euler case.
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Figure 13: 69◦ Delta Wing Euler Near-Field Pressure Signature Dispersion

As with the SEEB-ALR, the accuracy of the surrogate model needs to be verified. It was determined
that the average error at the 20 test points was less than 0.4% for all of the flow type/loudness quantity
combinations indicating the selection of a second-order PCE was sufficient. With the surrogate models
constructed and validated, the uncertainty can be propagated through the surrogates using the second-order
probability analysis outlined in section IV. This was done using the sampling approach, resulting in the
family of CDFs. For the Euler case, the boundaries of the probability boxes are shown in Figure 15(a) and
Figure 15(b) for PLdB and CSEL, respectively.

A summary of the 95% confidence intervals for both Euler and Turbulent cases is shown in Table 8. From
these results, it can be seen that the effect of an inviscid versus the fully turbulent analysis is slightly more
significant compared to the SEEB-ALR model for both loudness measures. However, there is still less than
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Figure 14: 69◦ Delta Wing Euler Ground Signature Dispersion
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Figure 15: 69◦ Delta Wing Euler PLdB and CSEL Probability Box Boundaries

a one PLdB and CSEL difference between the two levels of model fidelity. This may indicate that the use of
a Euler analysis may be sufficient given the reduce computational cost over the fully turbulent analysis, for
this model.

Table 8: 69◦ Delta Wing 95% Confidence Intervals

Configuration PLdB CSEL

Euler [93.16 , 95.58] [97.18 , 98.46]

Turbulent [94.03 , 96.35] [97.63 , 98.85]

3. Sensitivity Analysis

The contribution of the top uncertain parameters to both PLdB and CSEL are given in Tables 9 and 10,
respectively. The results of this sensitivity analysis are similar to those observed for the SEEB-ALR. The
reflection factor contributes even more to the total output uncertainty for both loudness metrics, and the
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contribution of the atmospheric humidity variation contributes significantly to PLdB.

Table 9: 69◦ Delta Wing Top Uncertain Pa-
rameter Contribution to PLdB Total Uncer-
tainty

Uncertain Parameter Euler Turbulent

Initial Step Size 1.4% 1.0%

Reflection Factor 50.9% 52.0%

Temperature Profile 1.3% 1.8%

Humidity Profile 37.1% 38.0%

Ground Elevation 7.9% 6.3%

All Others <1% <1%

Table 10: 69◦ Delta Wing Top Uncertain Pa-
rameter Contribution to CSEL Total Uncer-
tainty

Uncertain Parameter Euler Turbulent

Reflection Factor 93.1% 94.4%

Temperature Profile 2.1% 2.5%

Humidity Profile 1.1% 1.5%

Ground Elevation 1.9% 1.4%

All Others <1% <1%

D. LM 1021-01 Low-Boom Configuration

1. Comparison with Experiment

For the LM 1021-01, near-field signatures were taken at 20.7 inches from the body to coincide with experi-
mental data. Comparison with the experiment is shown in Figure 16(a) for both inviscid and fully turbulent
flow assumptions. A residual scale plot of the signatures is shown in Figure 16(b). The fully turbulent
solution agrees well with the experimental results, with the exception of the rounding of the peaks in the
experimental results, similar to the delta wing and SEEB-ALR models. The inviscid solution, however,
does not agree as well. Aftosmis et al.18 identify the source of this discrepancy, which stems from a shock
originating at the front of the under wing nacelle. In the viscous case, this shock is smeared by the boundary
layer between the wing and nacelle, but propagates in the inviscid simulation. A more complete discussion
is included in the reference. An important note should be made regarding the length of the LM 1021-01
signature. The computational domain is slightly truncated as the signature does not fully recover to zero.
As stated above, the ends of the signatures are forced to zero to prevent any numerical issues in propagating
the signature to the ground level. This artificial forcing of the signature, however, is not expected to effect
the loudness results as this is not in a strong shock or expansion region.
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Figure 16: LM 1021-01 Near-Field CFD Comparison with Experimental Results
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2. Uncertainty Quantification

The surrogate models for CSEL and PLdB are constructed in the same fashion as for the other cases. The
dispersion of the deterministic samples for the Euler case are shown in Figure 17(a). Figure 17(b) shows the
same dispersion of signals, but shifted to reference location for better visualization of changes in signature
amplitude. For the Euler case, the resulting ground signature dispersion is shown in Figure 18(a) and shifted
to a reference location in Figure 18(b). The ground signatures were then analyzed to produce the desired
loudness quantities of interest.
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Figure 17: LM 1021-01 Euler Near-Field Pressure Signature Dispersion
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Figure 18: LM 1021-01 Euler Ground Signature Dispersion

Similar dispersions of the near-field and ground level signatures can be generated for the fully turbulent
case. Because of the effect of different flow physics modeling, the signatures for the turbulent case are
slightly different, both in the near-field, as well as at the ground level. The near-field signatures are shown
in Figure 19(a) and shifted to a reference location in Figure 19(b). The ground level signatures are shown
in Figure 20(a) and shifted to a reference location in Figure 20(b).

The surrogates are validated using 20 test points distributed throughout the design space, similar to
the previous two models. The average error at these 20 test points was less than 0.2% for all of the flow
type/loudness quantity combinations indicating the selection of a second-order PCE was sufficient. The
uncertainty is propagated through the surrogates and a family of CDFs were produced. For the Euler case,
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Figure 19: LM 1021-01 Turbulent Near-Field Pressure Signature Dispersion
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Figure 20: LM 1021-01 Turbulent Ground Signature Dispersion

the boundaries of the probability boxes are shown in Figure 21(a) and Figure 21(b) for PLdB and CSEL,
respectively.

A summary of the 95% confidence intervals for both Euler and Turbulent cases is shown in Table 11.
From these results, it can be seen that the effect of an inviscid versus the fully turbulent analysis is more
significant than for the SEEB-ALR and the Delta wing models for both loudness measures. This is due
to the reduced order modeling fidelity of the Euler analysis. While the loudness values are lower for the
inviscid case, which is desirable, the accuracy of the Euler model has to be in question due to this significant
difference. Along with the discrepancy in the near-field signature, this indicates an inviscid assumption is not
appropriate for this configuration under the current flow conditions. Aftosmis et al.18 notes the wind tunnel
experiments were conducted at a relatively low Reynolds number (which was matched for the simulations).
At a higher Reynolds number, an Euler solution may be sufficient, but this must first be validated for the
new freestream conditions.

3. Sensitivity Analysis

The contribution of the top uncertain parameters to both PLdB and CSEL are given in Tables 12 and
13, respectively. The results of this sensitivity analysis is different than that observed for the SEEB-ALR
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Figure 21: LM 1021-01 Euler PLdB Probability Box Boundaries

Table 11: LM 1021-01 95% Confidence Intervals

Configuration PLdB CSEL

Euler [87.76 , 90.60] [94.43 , 96.85]

Turbulent [90.17 , 93.79] [96.06 , 98.76]

and Delta Wing models as the reflection factor is no long the top parameter. While the reflection is still
significant, angle of attack now dominates the output uncertainty for both loudness metrics. Because of the
specific design of the LM 1021-01, changes in angle attack may effect the use of specific design features,
especially those related to shock cancellation off the body.

Table 12: LM 1021-01 Top Uncertain Param-
eter Contribution to PLdB Total Uncertainty

Uncertain Parameter Euler Turbulent

Mach Number 1.4% 0.2%

Angle of Attack 39.0% 55.1%

Reflection Factor 33.8% 21.9%

Temperature Profile 1.6% 0.7%

Humidity Profile 22.7% 17.9%

Ground Elevation 1.6% 4.3%

All Others <1% <1%

Table 13: LM 1021-01 Top Uncertain Param-
eter Contribution to CSEL Total Uncertainty

Uncertain Parameter Euler Turbulent

Angle of Attack 57.2% 63.9%

Reflection Factor 38.2% 32.0%

Temperature Profile 1.1% 1.3%

Ground Elevation 2.4% 2.9%

All Others <1% <1%

VIII. Conclusions

The objective of this work was to develop and demonstrate a non-intrusive, computationally efficient
approach to uncertainty quantification and certification prediction for low-boom, supersonic aircraft config-
urations. Key components of the developed framework included the use of a surrogate based uncertainty
quantification approach using non-intrusive polynomial chaos, the propagation of mixed aleatory and epis-
temic uncertainties, and a measure of the margin and uncertainty between the design, under uncertainty, and
a certification value used for certification prediction. The use of a surrogate based, non-intrusive approach
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was implemented for computationally efficiency and ease of implementation when investigating the large-
scale, high-fidelity computational fluid dynamics models analyzed in this study. The non-intrusive nature
of the approach presented here is advantageous because of its broad applicability to any type of complex,
multiphysics simulation.

This process was successfully demonstrated on three low-boom configurations: the Lockheed Martin
SEEB-ALR body of revolution, the NASA 69◦ Delta Wing, and the Lockheed Martin 1021-01 configuration.
Sources of uncertainty considered in the high-fidelity, multiphysics models included variability in freestream
conditions, atmospheric profiles, and other modeling parameters used in the propagation of the sonic boom
signatures from the near-field to the ground level. Sensitivity analyses were also performed to identify
important uncertain parameters. Additionally, the use of an inviscid versus a fully turbulent flow assumption
was investigated for each configuration.

The uncertain inputs and subsequent results given in this study were only the finalized results. There were
multiple intermediate steps before finalizing uncertain inputs and even the numerical models. One of the key
advantages of the process and methodologies outlined in this study, is its applicability in efficiently identifying
significant sources of uncertainty and their effect on output uncertainty. Input parameters that contribute
significantly to the uncertainty may be subject of refinement, model improvement, or may help identify
incorrect models/parameters. For example, in performing this study there was a significant intermediate
change in the numerical approached used to calculate the loudness values from the ground level signature.
Initial results indicated that the sBOOM sampling rate input parameter contributed as much as 80% to the
total output uncertainty. More importantly, 95% confidence interval widths for PLdB and CSEL were as
much as an order of magnitude greater than the results reported above. This led to further investigation,
which resulted in two changes to the analysis. First, the dependence of the loudness metrics on the number
of sBOOM sample points was better quantified and slight refinement was made to the epistemic uncertainty
range. Second, the information provided in these intermediate results helped identify an issue within the
numerical routine used to integrate ground level signature to obtain the loudness metrics. Correcting this
issue led to the results detailed throughout this study.
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